400-863-9100

禁阻跃迁(forbidden transitions)

定义:
相同角量子数(即△l = 0)之间的电子跃迁是禁阻的,△l =±1之间的电子跃迁是允许的,如d↔d,p↔p,f↔f 跃迁是禁阻的,而s↔p,p↔d,d↔f跃迁是允许的,这一规则常被称为拉波特(Laporte)定则。从对称性角度来说,原子轨道的角度部分有中心对称(g)和反对称(u)之分,而角量子数为零和偶数的轨道(s,d)具有g对称性,角量子数为奇数 (p,f) 的轨道具有u对称性。根据拉波特定则,如果分子或离子具有对称中心,那么g↔g和u↔u跃迁是对称禁阻的跃迁,而g↔u跃迁是对称允许的跃迁。
相关词条:
受激辐射  光钟  光频标  亚稳态  高能态寿命  自发辐射 

光谱选律

       配合物电子光谱的三个重要内容是:谱峰的位置(即λ)、强度和宽度。 物质吸收可见光或紫外光,发生由基态向激发态的电子跃迁。吸收光谱的谱峰强度差别大。光谱选律可概括为:

(1)自旋选律

自旋多重度相同(即△s = 0)的能级间的电子跃迁是自旋允许跃迁,而自旋多重度不同的能级间的电子跃迁是自旋禁阻跃迁,因为后者能级间的△S≠0,需要供给较多的能量才有可能改变电子的自旋状态。

(2)轨道选律

相同角量子数(即△l = 0)之间的电子跃迁是禁阻的,△l =±1之间的电子跃迁是允许的,如d↔d,p↔p,f↔f 跃迁是禁阻的,而s↔p,p↔d,d↔f跃迁是允许的,这一规则常被称为拉波特(Laporte)定则。从对称性角度来说,原子轨道的角度部分有中心对称(g)和反对称(u)之分,而角量子数为零和偶数的轨道(s,d)具有g对称性,角量子数为奇数 (p,f) 的轨道具有u对称性。根据拉波特定则,如果分子或离子具有对称中心,那么g↔g和u↔u跃迁是对称禁阻的跃迁,而g↔u跃迁是对称允许的跃迁。例如正八面体(Oh)配合物有对称中心,由d n组态派生的全部谱态都保留了原先d轨道固有的g对称性,pn组态派生的全部谱态却保留了轨道固有的u对称性,因此d↔d,p↔p跃迁是对称性禁阻的,而d ↔ p跃迁是对称性允许的。

禁阻跃迁的破坏

        如果上述规则严格成立的话,就不会观察到配合物的d↔d光谱,但事实上上述规则并不是任何情况下都严格成立,由于实际的配合物中存在复杂的相互作用,而某种程度破坏了上述所谓的禁阻跃迁。

        例如,在正八面体(Oh)配合物中,由于存在电子运动与振动的耦合,某些振动方式会使配合物暂时失去对称中心,从而破坏其八面体对称性,致使金属的d轨道与p轨道可以部分混合(或杂化),于是可能发生由dn组态派生的基谱态到激发态谱态的电子跃迁,并带有部分g↔u跃迁特征。但是,由于这种偏离中心对称的状态只能维持瞬间,所以上述跃迁的几率是不大的,反映在吸收光谱上,吸收峰的摩尔吸光系数不大,对于没有对称中心的四面体配合物,由于金属的p轨道与dxy、dxz、dyz轨道上都有t2对称性,可以混合,所以这两组轨道中的任何一组都必定具有一定量的p特征和d特征,于是有基态到激发态的电子跃迁,就或多或少地包含有d↔p跃迁,而且,在配合物中金属d轨道和p轨道之间的这种混合会由于与配体轨道的重叠成键而得到加强。通常四面体配合物的吸收光谱的强度是相应八面体配合物的100倍左右,这是由于四面体配合物不需变形就有d-p混合,而八面体配合物则是瞬间变形以后才会有d-p混合。

光谱强度

      自旋禁阻的跃迁也由于旋轨耦合而部分解除,且随旋轨耦合作用增强而跃迁几率增大,不过总的来说自旋禁阻的跃迁所产生的光谱还是很弱的,对于第一过渡系金属配合物,自旋禁阻的光谱强度仅为相应自旋允许的几百分之一。

一般来说,自旋禁阻,对称性禁阻跃迁的ε值约为10-2~100,自旋允许、对称性禁阻跃迁的ε值约为100~102之间,自旋允许、对称性允许的跃迁ε值约为103~105之间。

知识拓展

       荷移(CT)光谱

       在配离子中基态和激发态之间的跃迁包含着电荷迁移所产生的光谱称为荷移光谱。电荷可以从金属迁移到配体,也可以从配体迁移到金属,还可以在同种金属不同氧化态之间迁移。因为这是一种轨道允许及自旋允许的跃迁,所以荷移谱带是强吸收带,摩尔吸光系数ε最大可达104~105,比d—d谱带大100—1000倍。由于它比d—d跃迁能量高,所以多出现在紫外区,但吸收峰尾却可以伸展到可见光区。

配体对金属的荷移(LM跃迁)

这种跃迁相当于金属被还原,配体被氧化,但一般不能实现电子的完全转 移。通常把这种跃迁叫做金属还原跃迁。金属离子越容易被还原,配体越容易被 氧化,则这种跃迁的能量就越小。

L→M跃迁有以下几个明显的特点:

(1)跃迁能级高,常在紫外和可见区的蓝端。

(2)荷移光谱强度大,摩尔消光系数ε常在103~105之间。

(3)配体愈易氧化,则跃迁能愈低( 越小)。

(4)每种跃迁产生的吸收并不是单一的,π-π* 跃迁对应的吸收峰是由若干吸收峰组成的。

(5) 谱带较窄,而其余谱带较宽。

(6)金属离子的还原性越强,则越大。

(7)同周期不同族的金属离子所形成的含氧酸根离子(Td)从左至右荷移光谱带的波长向长波方向移动,这是因为随着中心离子氧化性增强,跃迁能级差减小,故吸收波长外移,物质的颜色变深。

金属对配体的荷移(ML)跃迁

      这类跃迁与L→M跃迁方向相反,它往往发生在金属容易被氧化,而配体又容易被还原的配合物中。

能在可见区或接近可见区发生的M→L荷移的配体比可产生L→M荷移的配体少得多,一般不饱和配体和氧化性配体能通过其π*反键轨道表现出这种荷移,发生此类跃迁的常见配体还有CO、邻-菲绕啉、聚苯胺、聚吡咯等。

L→M跃迁的一般原理同样适用于M→L跃迁,只是电荷迁移的方向相反。 金属的氧化态越低,配体的电负性越大,荷移谱带的能量越低。

L→M跃迁是电子从以配体为特征的分子轨道转移到以金属为特征的分子轨道;而M→L跃迁是电子从以金属为特征的分子轨道转移到以配体为特征的分子轨道。但是,如果配体与金属的轨道“混合”越强,就愈难区分哪些轨道基本上有配体特征,哪些轨道基本上有金属特征了。

M M跃迁

     这类跃迁发生于含有不同氧化态的同种金属离子的化合物中,这类化合物被称为混合价化合物。

分享到 :